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ABSTRACT 

In this paper, we first investigate the distance structure 

of cyclic codes of composite length. A lower bound on the 

minimum distance for this class of codes is derived. In many 

cases, the lower bound gives the true minimum distance of a code. 

Then, we investigate the distance structure of the direct sum of 

two cyclic codes of composite length. We show that, under 

certain conditions, the direct-sum code provides two levels of 

error correcting capability, and hence is a two-level unequal 

error protection (UEP) code. Finally, a class of two-level UEP 

cyclic direct-sum codes and a decoding algorithm for a subclass 

of these codes are presented. 



I. INTRODUCTION 

Unequal error protection (UEP) codes[l-111 are desirable in 

certain data communication situations. For example, consider a 

data communication system in which each message from the 

information source consists of several parts, and different parts 

have different degrees of significance. More significant parts 

require more protection against the channel errors, while the 

less significant parts require less protection against the 

channel errors. As a result, it is desired to use a code with 

unequal error protection capabilities. Another situation where 

UEP codes are desired is in broadcast communication systems[l3- 

151. An m-user broadcast channel has one input and m outputs. 

The single input and each output form a component channel. The 

component channels may have different noise levels, and hence the 

messages transmitted over the component channels require 

different levels of protection against errors. 

UEP codes were first studied by Masnick and Wolf[l], then by 

many other coding theorists[2-15]. In this paper, we investigate 

cyclic UEP codes which are formed by taking the direct sums of 

cyclic codes of composite length. We first investigate the 

weight structure of cyclic codes of composite length. Then, we 

analyze the distance structure of the direct sum of two cyclic 

codes of composite length. We show that, under certain distance 

conditions, the direct-sum code provides two levels of error- 

correcting capability, and hence is a two-level UEP code. 

Finally, a class of two-level UEP cyclic direct-sum codes is 

presented. Also, a decoding algorithm for a subclass of two- 
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level UEP cyclic direct-sum codes is devised. 

11. WEIGHT STRUCTURE OF BINARY CYCLIC CODES OF COMPOSITE LENGTH 

Let n1 and n2 be two positive odd integers which are 

relatively prime. Let 

n = n1n2. 

Let a be an element from some G a l o i s  field, say GF(29), with order 

n. Hence a is a primitive n-th root of unity. Now we consider a 

binary (n,k) cyclic code C with generator and parity polynomials, 

g(X) and h(X), respectively. It is known in coding theory that 

the degree of g(X) is n-k, the degree of h(X) is k ,  and 
.i 

Xn+l = g(X)h(X). 

be the root sets of g(X) and h(X) respectively. These two sets 

are disjoint and their union gives all the roots of Xn+l in 

GF(29), i.e., 
( 1 , a , a  2 , . . . ,  a n-1 }. 

Since every code polynomial c(X) in C has the elements in Zg as 

roots, we call the elements in Z the zeros of C. No element in !3 

zh can be a root of every code polynomial in C. We call the 

elements in zh the nonzeros of C. 

A code polynomial c(X) in C is a polynomial of degree n-1 o r  

less, 
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(1) c(x) = a. + alX + a2x2 + ... + an,l xn-l 

with ai E GF(2). 

c(X) as an nlxn2 code array as shown in Figure 1. 

It is possible to arrange the coefficients of 

Figure 1. The nlxn2 code array of c(X) . 
For 09<n2, the p-th column can be put into a polynomial of 

degree (nl-l)n2 or less as follows: 

nl-1 

i = O  
Xisn2 = I  ai.n2+p 

Then the code polynomial c(X) can be expressed in the following 

form: 

c(X) = AO(X) + Ai(X)X + e . .  + An,- 1 (X) x"2-1 

n2-1 

p=O 
= c  A,, (X) Xp. ( 3 )  

The expression of ( 3 )  will be used for deriving a lower bound on 

' the weight of c(X). The main idea is to count the number of 

nonzero columns in the nlxn2 code array corresponding to c(X) and 

the number of nonzero components in every nonzero column. 

4 



Let B = an' and 7 = an2. Then p and 7 are elements in GF(2q) 

with orders n2 and n1 respectively. Let p be a non-negative 

integer less than n. Since n1 and n2 are relatively prime, there 

exist two unique nonnegative integers, R and m, with 09<n2 and 

O<m<nl such that 

( 4 )  a P = p r  R m  

(see Appendix A ) .  Substituting X by ap in ( 3 )  and using ( 4 ) ,  we 

have 
a m  C(aP) = C(P 7 1 

Let q1 be the multiplicative order of 2 modulo nl. Then GF(2q1) 

is a subfield of GF(2q). It can be shown that, for 09<n2, 

A,(7m)7mp is an element in GF(2q1). Define the following 

polynomial over GF (29') : 

It follows from ( 5 )  to ( 6 )  that 

(7) c(ap) = a(m) (#I. 
Clearly, p' is a root of a(m)(~) if ap is a root of C(X). 

Next we examine the weight of a code polynomial c(X) in C .  

For a given m with Osmal, let V(m) (c) be the cyclic code over 

GF(2q1) of length n2 which has the following set of elements as 

zeros (or roots of its generator polynomial): 

(pR : OcR<nZ and C(ap) = a(m) (8') = 0). 
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Then it is clear that the polynomial a(m) (X) of ( 8 )  associated to 

c(X) is a code polynomial in V(m)(c). Let d(m)(c) denote the 

minimum distance of V(m)(c). Then, if a(m)(X) is not a zero 

polynomial, the weight of a(m)(X) is at least d(m)(c). 

Now we define the following set of integers associated to the 

code polynomonial c (X) : 

J(c) = {m : Oim<nl, and c(p’-ym)=a(m)(pL)=O 

for I = 0,1,2, ..., n2-l}. (9) 

Lemma 1: Consider the polynomial a(m) (X) of (6) associated to a 

code polynomial c(X) in C. If m is an integer in J(c), then 

a(m) (X) is a zero polynomial and 

A,(Yrn) = 0 

for p = 0,1,. . . ,n2-1. 
Proof: If m is an integer in J(c), then it follows from the 

definition of J(c) that a(m) (X) has 1,p,p2,. . . ,pn2-l as roots. 

However a(m) (X) is a polynomial of degree n2-1 or less. Hence if 

a(m)(X)zO, it has at most n2-1 distinct roots. As a result, 

a(m) (X) must be a zero polynomial, 

that 

and hence it follows from ( 6 )  

AP(-yrn) = 0 

for p = O,l, ..., n2-1. 
Q.E.D. 

From ( 8 )  and (9), we see that, for m E J(c), V(m)(c) 

consists of only the zero polynomial, and d(”) (c) = 0. ’ 

Let J(c) denote the complement of J(c) with respect to the 

set {0,1,2,. . . ,nl-l), i.e., 
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Def ine 

D(c) = max {d(m) (c) : m E S(c) } .  

Then we have Lemma 2. 

Lemma 2: Let c(X) be a nonzero code polynomial in C. Consider 

the expression of c(X) given by (3) There are at least D(c) 

A (X) I s  in (3) which are nonzero. 

Proof: First we note that J(c)+{Olll...lnl-l}l otherwise c(X)=O. 

Hence s(c) is not empty. Let m be an integer in T(c). Then 

P 

c(p I m  7 = a(m) ( p ’ )  jt o 

for some I with 051<n2. This says that a(m) (X) given by (6) is a 

nonzero code polynomial in V(m) (c) . Since the minimum weight of 

V(m) (c) is d(m) (c) , hence there are at least d(m) (c) AP(yrn) I s  in 

(6) are nonzero. This implies that there are at least (c) 

A,,(X)’s in (3) are nonzero. Since this is true for all m in 

J(c) I hence there must be at least D(c) AP(X) I s  in (3) which are 
- 

.I. 

nonzero. 
Q.E.D. 

Now we define a binary cyclic code associated to a nonzero 

code polynomial c(X) in C ,  Let W(c) be the binary cyclic code of 

length n1 with the following set of zeros: 

{(7n2)m : m E J(c)). (12) 

Note that the order of vn2 is n1 (same as the order of 7). Let 

d(c) denote the minimum distance of W(c) . For m E J(c) I it 

follows from Lemma 1 that the polynomial a(”)(X) associated to 

c(X) is a zero polynomial and 
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for p=0,1,2, ..., n2-1. 
form the following polynomial: 

Using the coefficients of AP(X) of (2), we 

- x2 + ... + a x"2-1 AP(X) = a (nl-l) n2 +P + a n,+pX + a2n2+p P 

nl-1 

i=O 
= C ai.n2+p Xi. 

It follows from (13) and (14) that 
m n  - 

A P ( ( 7  1 2, = AP(7m) = 0 
- 

for m E J ( c )  and p=O,1,2 ,..., n2-1. Since AP(X) is binary 

polynomial of degree nl-1 or less and has the elements in ( ( T " ~ ) ~  

: 

is to say that each column of the array shown in Figure 1 is a 

codeword in W(c) . 
least d(c). Since A,,(X) and X,(X) have the same coefficients, 

the weight of A,(X) is at least d(c) provided that AP(X)zO. 

Summarizing the above results, we have Lemma 3. 

Lemma 3: Let c(X) be a nonzero code polynomial in C. The weight 

of any nonzero A,,(X) associated to c(X) is at least equal to the 

minimum distance d(c) of the code W(c) . 

m E J(c) } as roots, X,(X) is a code polynomial in W(c) . This 

Hence, if x,(X)#O, the weight of xP(X) is at 

M 

It follows from Lemmas 2 and 3 that we have Theorem 1. 

Theorem 1: Let C be a binary cyclic code of composite length 

n=nlxn2 where n1 and n2 are relatively prime. Let c(X) be a 

nonzero code polynomial in C. Then the weight of c(X) is at 

least D(c)d(c) where D(c) is given by (11) and d(c) is the minimum 
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weight of the binary code W ( c )  defined by (12). 

M 

Example 1: 

from field GF(28). Let /+a3 and 7=a 17 . Consider a (51,18) 

binary cyclic code whose zeros (roots of the generator 

polynomial) and nonzeros (roots of the parity polynomial) are 

shown in Table 1. The table is a 3x17 array with 51 nonnegative 

integers from 0 to 50. A number p in the array represents the 

field element a”. The rows of the array are numbered from 0 to 

2, and the columns are numbered from 0 to 16. If p is at the m- 

th row and the l-th column of the array, then the element ap can 

be expressed as the product of rm and p a ,  i.e., 

Let n1=3 and n2=17. Let a be an element of order 51 

aP = BaTm 

For example, Q 41 = p 8 7 .  The underlined numbers in the array 

represent the nonzeros of the code while all the other numbers in 

the array represent the zeros of the code. For example, a 29 is 

not a zero and a41 is a zero. 
- _  

Table 1 

Nonzeros of a (51,18) Binary Cyclic Code 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 

-- 17 20 23 26 29 32 35 38 41 44 47 50 2 2 8 11 14 

- 34 37 40 43 46 49 1 4 7 10 13 16 19 22 25 28 31 

Let c(X) be a nonzero code polynomial. From the theory of 

cyclic code, we know that the zeros of the code are roots of c(X). 
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From Table 1 we see that, for m = 0, 

c(pJ) = 0 

c(s% + 0 

c(BR,Y2) + 0 

for 1 = 0,1,...,16. For m = 1, 

for some R = 0,1,3,4,5,12,13,14 and 16. For m = 2, 

for some R = 0,2,6,7,8,9,10,11 and 15. Therefore, 

J(c) = (0) and z(c) = {1,2}. 

Note that, for m = 1, 

c(p1,) = a(’) ( p a )  = o 
for I = 2,6,7,8,9,10,11,15. It follows from (8) that the code 

V(l) (c) has the set of zeros which includes 

2 6 7 8 9 10 pll,p15) ( B  , B  , B  18 18 18 I 

as a subset. Since V(’)(c) has 6 consecutive zeros (from p6 to 

PI1), it follows from BCH bound [16] that the minimum distance 

d(l) (c) of V(l) (c) is at least 7. Note that pa is a zero of 

V(l)(c) Hence V(2)(c) 

is equivalent to V(l)(c) and 

d(2) (c) = d(’) (c). 

if and only if p21 is a zero of V(2)(c). 

Then 

D(c) = max (d(l) (c) (c) } 2 7. 

Since J(c )={O) ,  the code W(c) has ro=l as the only zero. Hence the 

minimum distance d(c) of W(c) is 2. Then it follows from Theorem 

1 that the weight of c(X) is a least D(c)d(c)>l4. Hence the 

* minimum distance of the (51,18) code is at least 14. Note that 

the BCH bound of this code is 12 while the real minimum distance 

is 14[16]. 
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The results derived in this section will be used to derive 

lower bounds on minimum distances and the multi-level error 

correcting capabilities of cyclic direct-sum codes of composite 

length in the latter sections. The result given in Theorem 1 is 

a slight variation of a result proved by Hartman and Tzeng[l7]. 

111. DIRECT SUM OF TWO CYCLIC CODES 

For i = 1 or 2 ,  let gi(X) and hi(X) be the generator and 

parity polynomials of a binary (n,ki) cyclic code Ci 

respectively. Note that 

gi(X)hi(X) = Xn+l (15) 

for i = 1,2. Suppose hl(X) and h2(X) are relatively prime. Now 

we C1 want to show that the only code polynomial common to both 

and C2 is the zero polynomial. 

common to both C1 and C2. Then 

Let c(X) be a code polynomial 

for i=1,2. Since hl(X) and hZ(X) are relatively prime, there 

exists two polynomials bl(X) and b2(X) such that 

(18) bl(X)hl(X) + b2(X)h2(X) = 1 mod Xn+l. 

Multiplying both sides of (18) by c(X), we have 

c(X) = { bl(X)c(X)hl(X) + bZ(X)c(X)hZ(X) 1 mod Xn+l. (19) 

It follows from (17) and (19) that 

(20) c(X) = 0 mod Xn+l. 
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Since c(X) is a polynomial of degree less than n, it follows from 

(20) that c(X) must be the zero polynomial. This proves that C1 

and C2 have only the zero polynomial as the common code 

polynomial. 

Let g(X) be the greatest common divisor of gl(X) and g2(X), 

i.e. 

g(X) = GCD tsl(x) I 92(X) 1' 
Since hl(X) and hl(X) are relatively prime, it is easy to see from 

(15) that 

91(X) = g(X)h2(X)r 

42(X) = g(X)hl(X), 

Xn+l = g(X)hl(X)h2(X). 

The degrees of g(X) and h(X)=hl(X)h2(X) are n-kl-k2 and kl+k2 

respectively. Let C be the direct sum of C1 and C2. Then C is an 

(n,kl+k2) linear code. We can readily see that every code 

polynomial in C is divisible by g(X) . Since the degree of g(X) 

is n-kl-k2, hence g(X) generates C. Therefore the direct sum C 

of C1 and C2 has g(X) and h(X)=hl(X)h2(X) as its generator and 

parity polynomials. 

Let A1 = { O , l } k l  and A2 = {0,1}k2 be two message spaces. A 

message from Ai is denoted by xi, where i=1,2. Let A be the 

Cartesian product of A1 and A2. Then, 

A = AIM2 
- 

= {(x1,x2) : xi E A i  for i = 1,2}. 

We call A1 and A2 the first and second component message 

spaces of A respectively; and call x1 and x2 the first and 
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second component message of the message (x1,5Z2). 
be the codes for the component message spaces A1 and A2 

respectively. Then the direct-sum code C = C10C2 is an (n,kl+k2) 

code for the product space A. Let V(Xl,S2) denote the 

codeword in C for the message (x1,x2). Then v(xl,x2) can 

be uniquely expressed as the sum of v(xl) and v(x2), where 

V(Xl)  

and x2 in C1 and C2 respectively. 

Let C1 and C2 

- -  - 

- -  

and V(Z2) are the codewords for component messages x1 

In [11,12], we have shown that, under certain distance 

conditions, direct sum codes have multi-level error correcting 

capabilities and hence are multi-level UEP codes. The main 

purpose of this paper is to construct UEP codes by taking direct 

sums of cyclic codes of composite length. For this purpose, we 

need to review some distance properties of direct-sum codes. 

These properties were proved in [11,12]. We simply state these 

properties here without proofs. 

The error correcting capabilities of an UEP code is 
‘X 

determined by its separation vector s[5,11,12]. 

UEP codes, the separation vector is a distance vector of m 

components. In this paper, we only consider two-level UEP codes. 

Consider a message (xl,P2) which consists of two parts x1 and 

x2, where x1 and x2 are kl-tuple and k2-tuple over GF(2) 

For an m-level 

- - - 

respectively. Let C be the code for the message space {(Xl,x2) - 
k : x1 E { O , l ) k l  and T7, E (0,l) 2 ) .  Let ?(xl,x2) be the 

- 

* codeword for the message (Xi,x2). Then, the separation vector 

of C is = (sl,s2) where 
- - 

s1 = min {w[V(Xl,x2)] : x1 + 51, 
13 



- 
s2 = min {w[s(x1,X2)] : x 2  + G I ,  (21) 

and w(V) denote the Hamming weight of v. Clearly, the minimum 

distance of code C is simply dmin = min{sl,s2}. The component s1 

determines the level of protection for component message x1 

against the channel errors, and the component s2 determines the 

level of protection for component message z2 against the channel 

- 

errors. For a two-level UEP code s1 z s 2 .  Without loss of 

generality, we assume that s1 > s2. The error correcting 

capabilities of a two-level UEP code are stated in Theorem 2 (see 

[ 1 1 , 1 2 3  for a proof). 

Theorem 2: Consider a two-level UEP code C for the message space 

A = {(X1,X2) : x1 E { O , l } k l  and x2 E { 0 , 1 } k 2 } .  Let = 

(s1,s2) be the separation vector of C. Let V(xl,x2) and 2 be 

the transmitted codeword and received word respectively. Then 

the component message X1 can be decoded correctly from r if 
contains 

correctly). 

both X1 and x2 can be decoded correctly. 

- 

- r 

tl = 1(sl-1)/2J or fewer errors (x2 may not be decoded 
If r contains t2 = L(s2-1)/21 or fewer errors, then 

M 

From Theorem 2, we see that a two-level UEP code with 

separation vector S = (sl,s2) protects message X1 against tl = 

L(sl-1)/2J 

l(s2-1)/2] or fewer errors. 

or fewer errors and protects message X2 against t2 = 

Now we come back to direct-sum codes. Theorem 3 states the 

conditions under which a direct-sum code is a two-level UEP code 

(see [11,12]  for a proof). 
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Theorem 3 :  Let C1 and C2 be an (n,kl) code and (n,k2) code for 

message spaces A1 = {O,l}kl and A2 = (0,1}k2 respectively. 

suppose C1 and C2 have only the zero vector in common. Let C = 

cle2 be the direct sum of C1 and C2. Suppose the following 

distance conditions are satisfied: 

(i) The weight of any nonzero codeword in C2 is at least 

d2; and 

(ii) The weight of any codeword in C-C2 is at least dl with 

dl with dl > dZ. 
- 

Then C is a two level UEP code with a separation vector s = 

(sl,s2), where s1 2 dl and s2 2 d2. .. 
M 

It'should be noted that Theorem 2 is also valid for the case 

of =d2. 

However, in such a case, C is not a UEP code. In the next 
s1 = s2 and Theorem 3 is also valid for the case of dl 

section we will consider two-level UEP codes which are direct 

sums of cyclic codes of composite length. 

IV. TWO-LEVEL UEP CYCLIC DIRECT-SUM CODES OF COMPOSITE LENGTH 

Let n=n1n2 where n1 and n2 are relatively prime. Again let a 

be an element of order n from some field G F ( 2 q ) .  

r=an2. Then, for any p with Olp<n, there exist two integers, m 

and I ,  with Oim<nl and 051<n2 such that ap=B I m  7 . 

Let B=anl and 

For i=1,2, let Ci be an (n,ki) binary cyclic code with 

generator polynmial gi (X) and parity pclynornial h i  (X) 

respectively. Note that C1 and C2 are two cyclic codes of 

composite length. Let ci(X) be a code polynomial in Ci for i = 

15 



1,2. Define 

where J(ci) is defined by ( 9 ) .  It is easy to see that, for 

i=1,2, a number rn with Osm<nl is in Ji if and only if Ci contains 

p 7 
R m  with R = O , l ,  ..., n2-1 as zeros. Let 

- 
Ji = { O , l ,  ..., nl-1} - Ji ( 2 4 )  

for i=1,2. If pa,m is not a zero of Ci for some R with Os1<n2, 

then m is an element in 5i. 

Assume that 3, and 5, are disjoint. Apparently, C1 and C2 

have no common nonzeros. Therefore, hl(X) and h2(X) are 

relatively prime. The direct sum of C1 and C2 is an (n, kl+k2) 

cyclic code C with generator polynomial g(X) = GCD {gl(X), g2(X)) 

and parity polynomial h(X) = hl (X) h2 (X) . 
For O<m<nl, let 

where 

ci(X) defined by ( 8 ) .  n2 
over GF(2q1) where ql is the multiplicative order of 2 modulo n1 

for i=1,2. The element pR is a zero of Vi(m) if and only if parrn 

is a zero of Ci. From the results in Section 11, we see that, 

V(m) (ci) is a cyclic code associated to the code polynomial 

Thus Vi(m) is a cyclic code of length 
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for m E Ji, Vi(m) consists of only the zero polynomial. Let 

df") for i=1,2 and Osmcn. Define 

D2 = min { dJm) } .  
m a 2  

Clearly, 

D(c~) 2 d(m)(Ci) 2 di(m) - > Di (29) 

for any nonzero code polynomial ci(X) in Ci and m E Ji with i=1,2. 

Then, it follows from Lemma 2 that at least Di of the n2 

polynomials A (X) associated to any nonzero code polynomial ci(X) 

in ci are nonzero for i=1,2. 
P 

Next we define two binary cyclic codes of length n1 based on 

C1 and C2 as follows: 

where W(ci) is the binary cyclic code associated to a code 

polynomial ci(X) defined by (12). We readily see that (rn2)" is 

a zero of Wi if and only if m E Ji for i=1,2. Equivalently, 

( ~ ~ 2 ) ~  
R = O ,  1,. . . ,n2-l 

are zeros of Ci. Since 3, and 3, are disjoint, the sets of 

nonzeros for W1 and W2 do not have any common element. Now 

consider the binary cyclic code W associated to the direct sum C 

is a zero of Wi if and only if parm with 

= c1 8 c2, 
17 



w =  u W(C)* 
c(X)+O 
C(X)EC 

Def ine 

J =  n J(CL 
C(X)EC 
C(X)#O (33) 

It is easy to see that 

J = J1 n J2. (34) 

Then ( T ~ ~ ) ~  is a zero of W if and only if m E J. 

(-yn2)m 

Or, equivalently, 

0,1,...,n2-l is a zero of W if and only if parm with L? = 

are zeros of C. The set of nonzeros for W is 

{(Tn21rn : m E 5 )  (35) 
- - where J = {O,l, ... ,nl-l) - JlnJ2. Since 3, and J2 are 

disjoint, we can easily see that W is the direct sum of W1 and 

W2, i.e., 

w = w1 0 w2. 
Let dl, d2 and d be the minimum distances of W1, W2 and W 

respectively. Then, dl)d and d2)d. 

Now we examine the distance structure of the direct sum C of 

C1 and C2. 

following sum, 

Any code polynomial c(X) in C can be expressed as the 

C(X) = Cl(W + C2(X) 

where cl(X) E C1 and c2(X) E C2. Suppose c(X) E C2 and c(X) z 0. 

Then cl(X)=O and c(X)=c,(X). It follows from Theorem 1 that the 

* weight of c(X)=c2(X) is at least D(c2)d(c2). Note that D(c2))D2 

and d(c2)zd,. Thus the weight of c(X) , denoted w(c(X) ) is at 

least D2d2 , i. e. , 
18 



W(C(X)) 2 D2d2. (37) 

Suppose c(X) E C-C2. Clearly cl(X)rrO. There exists an integer m 

in 7, such that 

(38) R m  

for some R E {O,l, ..., n2-1}. 
Cl(B 7 1 + 0 

Since 5, and 7, are disjoint, m must 

be in J2. Consequently, 
I m  C2(B 7 1 = 0 

c(B 7 1 = Cl(B 7 1 + c2(8 7 1 

= Cl(B 7 1 

for I = 0,1,. .., n2-1. From (38) and (39), we have 
R m  I m  R m  

I m  

z o  

(39) 

for some 1 = O,l, ..., n2-1. Accordingly, we have 

v(m) (c) = dm) (Cl), 
d(m)(c) = d(m)(cl). ( 4 1 )  

( 4 0 )  

It follows from Theorem 1 that the weight of c(X) is at least 

D(c)d(c). Note that D(c) 2 d(”)(c) = d(m)(cl) 2 dim) 2 D1 and 

d(c) 2 d. 

the above results, we have that 

Thus the weight of c(X) is at least Dld. Summarizhg 

(1) For c(X) E C-C2, w(c) 2 Dld; and 

(2) For c(x) E C2 and c(x)+O, w(c) 1. D2d2. 

Suppose Dld > D2d2. It follows from Theorem 3 that C is 

a two-level UEP code for the product message space A=AlxA2 

separation vector s=(sl, s2) where Al={O,l}kl, A2={0,1}k2, 

sl)Dld, and s2>D2d2. 

with 
- 

Example 2: 

of unity. Let p=a3 and 7=a17. Let C1 be the (51,18) binary 
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cyclic code given in Example 1. The nonzeros of C1 are given in 

Table 1. Let C2 be the (51,16) binary cyclic code with the 

following set of nonzeros: 

{ p a  : 1 = 1,2 ,..., 16). (42) 

From Table 1 and (42), we see that the sets of nonzeros for C1 

and C2 do not have any element in common. As a result, the 

direct sum C of C1 and C2 is a (51,34) binary cyclic code. From 

Table 1 and (42), we find that J1={O) and J2={1,2). Then, 

J1={1,2) and J2={0). Obviously, J1 and 3, are disjoint. 

From Table 1, 

and pl' as zeros. By BCH bound, the minimum distance dill of 

Vi1) is at least 7. 

Vi1) (in the sense that pa is a zero of Vi1) if and only if p2' 

is a zero of V i 2 ) ) .  Hence the minimum distance di2) of V i 2 )  

is the same as that of Vi1). As a result, di2)=di1) 2 7. 

From (27), we have D1)7. Since J1={O), the binary code W1 has 

only one zero which is 7 O = l .  The minimum distance dl of W1 is at 

least 2. 

- - - 

we see that the code Vi1) has p 6 ,  p 7 ,  / I 8 ,  p 9 ,  p10 

Note that the code V i 2 )  is equivalent to 

In fact W1 contains the following four vectors: 

(OOO), ( n o ) ,  (Oll), (101). 
Hence d1=2. 

Note that J,={O). To determine D2, we only need to determine 

the minimum distance dao) of the code Vao). Since p o = l  is a 

zero of c2, Hence diol is at least 2. 

From (28), we have D222. Now consider the binary cyclic code W2. 
Since J2={1,2), the zeros of W2 are 717=72 and ( 7  17 ) 2- -7. Thus 

the minimum distance d2 of W2 is at least 3. In fact, W2 

jo=l is a zero of v2 ('I. 
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consists only two codewords, (000) and (111). Hence d2=3. 

The binary code W is the direct sum of W1 and W2, and hence 

is the entire space { 0, l}3. Therefore, the minimum distance of W 

is d=l. 

From the above analysis, we have that Dld 2 7 and D2d2 2 6. 

Therefore the direct sum C of C1 and C2 is a (51,34) two-level UEP 

cyclic code with a separation vector at least (7,6). The message 

space A for C is the product of A1={0,1}18 and A2={0,1) 16 . Thus 

C provides protection of the first 18 message bits against 3 or 

fewer random errors and protection of the next 16 message bits 

against 2 or fewer random errors. Note that the best single- 
. ** 

level error correcting (51,34) cyclic code has minimum distance - 
d=6[16]. 

Some two-level UEP cyclic codes of composite length are 

given in Table 2. The nonzeros (roots of the parity polynomial) 

of each code are given. The nonzeros are represented by their 

exponents of Q. The true minimum distance and BCH bound of a 

code are denoted by d and dgCH respectively. From Table 2, we 

see that our algorithm gives the true minimum distances of these 

L 

cyclic codes by comparing s2 with d. 

Table 2 

Some Two-Level UEP Cyclic Codes of Composite Length 

n k  "1 "2 kl k2 s1 s2 d dBCH nonzeros 

51 17 3 17 1 16 17 16 16 11 0, 11, 19 

51 19 3 17 1 18 17 14 14 11 11, 19 

51 35 3 17 18 17 7 3 3 3 0, 3, 9, 11, 17, 19 

63 30 7 9 9 21 14 12 12 a 3. 9, 11, 13, 27, 31 
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V. A CLASS OF TWO-LEVEL UEP CYCLIC DIRECT-SUM CODES 

There is another class of two-level UEP cyclic codes. Each 

code in this class is the direct sum of two cyclic codes of 

composite length. Let n=n1n2 where n1 and n2 are odd positive 

integers and relatively prime. Again, let Q be an element of 

order n from GF(2q). Let /3=an1 and -y=an2. Let Cll be an 

(nl,kl+l) binary cyclic code whose parity polynomial hll(X) has 

the following set of roots: 

( 4 3 )  
ml m2 (1f-Y I 7 I - * * ,  -Yrnk1}- 

The elements in the set of (43) are the nonzeros of Cll. Let C22 

be an (n2,k2+1) binary cyclic code whose parity polynomial h22(X) 

has the following set of roots: 

{ 1, fi l l ,  /3 l2 , . . . f /3 Rk2 } . ( 4 4 )  

Then elements in the set of (44) are the nonzeros of C22. Let 

dll and d22 be the minimum distances of Cll and C22 respectively. 

Let dil and dl2 be the minimum distances of the even-weight 

subcodes of CI1 and C22 respectively. 

Now we form two longer cyclic codes from Cll and C22. Let C1 

be an (n1n2,kl) binary cyclic code with parity polynomial 

hl(X) = hll(X)/(X+1) I ( 4 5 )  

and let C2 be an (n1n2, k2) binary cyclic code with parity 

polynomial 

h2(W = h22(X)/(X+1) ( 4 6 )  

Clearly, the sets of nonzeros for C1 and C2 are {rml, 

T~~ ,..., - Y ~ ~ ~ }  and {/311, pa2 ,..., Bk2} respectively. It is easy 

22 



to show that these two Sets of nonzeros are disjoint. Hence 

hl(X) and h2(X) are relatively prime. Note that the roots of 

hl(X) are zeros of C2 and the roots of h2(X) are zeros of C1. 

Let C be the direct sum of C1 and C2. Then C is an (n1n2, 

kl+k2) cyclic code with parity polynomial 

h(X) = hl (X)h2 (XI ( 4 7 )  

Now we examine the distance structure of the direct-sum code C. 

A code polynomial c(X) in C can be expressed as the following 

sum: 

C(X) = Cl(X) + C2(X) 

c(X) E C'C2 

with cl(X) E C1 and c2(X) E C 2 .  First we consider the case thqf 

In this case, cl(X)zO. Hence, there exists an integer m E {ml, 

m2,  . . . ,mkl } such that 
cl(Tm) + 0 .  ( 4 8 )  

c(Tm) = cl(Tm) + c2(Tm) = cl(7m) 0 -  (49) *̂  

Since ym is a zero of C 2 ,  we have 
--. 

This implies that 

rn E S(C) 

where J(c) is defined by (10). Note that C has pJ7m with I = 

1,2, ..., n2-1 as zeros. Thus 

( 5 0 )  c(p I m  7 

d = 1 , 2 ,  ..., n2-1. 
= a(m) ( p a )  = o 

for 

has pa with d = 1 , 2 ,  ..., n2-1 as zeros. 

bound that the minimum distance dim) (c) of V(m) (c) is n2. 

Then the code V(m)(c) associated to c(X) 

It follows from the BCH 

Hence, 

(51 )  D(c) = max {d(m)(c) : m E r(c)) = n2. 

23 



It follows from Lemma 2 that all the n2 polynomials, A,,(X) with C, 

= 0,i ,...,n2-1, associated to c(X) are nonzero. Next, we want to 

determine the weight of each AC,(X). For 05R<n2 and 

m E {O,l,...,nl-l} - {O,ml, m2, ... f mk,)i 

Baym is a zero of C. It follows from the definition of J(c) 

given by (9) that 

J(c) 1 {O,l,...,nl-l} - (O,mlr m2, ..., mkl}. 
This implies that the binary cyclic code W(c) associated to c(X) 

is a subcode of the code Czl whose set of nonzeros is 

(1, (yn2)m1, (yn2)m2, . . . , (,"2)mk1}. (52) 
* From (43) and ( 5 2 ) ,  we see that Cll and Cll are equivalent. As 

a result, they have the same minimum distance dll. Therefore, 

the minimum distance d(c) of W(c) is at least dll. This implies 

that the weight of every nonzero Ap(X) is at least dll. It 

follows from Theorem 3 that the weight of c(X) is at least 

D(c)d(c) 2 n2dll. However, the weight of c(X) may be greater 

than n2dll. Note that c(X) has pa as a zero (or root) for 

R E {0,1,2,..-,n2-l} - (R1,12,...,1k2}. 
It follows from (7) that, for m=O, 

c(p1) = a(0) = o (53) 

for R E (0,1,2,...fn2-1} - (11,12,.-.,Rk2}. 
From (2) and ( 6 ) ,  we see that a(O)(X) is a binary polynomial of 

degree n2-1 or less. From (44) and (53), we see that a(')(X) is 

an even-weight code polynomial in C22. The coefficients of 

a(O)(x) are 

A0 (1) 1 A1 (1) 1 ,An2 -1 (1) 
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Since the length of C 2 2 r  n2, is odd and po= l  is not a zero of C22, 

the weight of an even-weight code polynomial in C22 is at most n2- 

d22. This implies that at least d22 of the n2 coefficients, 

A0(1), A1(1), * * e  An, -1(1) are zero. This means that at least 

d22 of the n2 polynomials, A1(X), ..., Anz - l(X) have even 
weight, Which is at least dil. As a result, the weight of c(X) 

is at least 

AO(X), 

("2-d22)d11 + d22dil = "2dll + (dil'dl+322* (54) 

Now we consider the case for which c(X) E C2 and c(X)zO. 

Then c(X)=c,(X)+O. It follows from the definition of C2 that 

there exists some R E {Rl,R2,...,lk2} for which 

c(pR) = c2(pR) = a(') ( p a )  + 0. 

For R E {0,1,2,. . . ,n2-l}-{Rl,12,. . . ,Rk,}, pa is a zero of C, which 

implies that 

c(p') = a(')(#) = 0, (55) 

i.e. V(O)  contains ,9' as a zero. From (2), (6) ,(44), and (55), 

we see that a(') (X) is an even weight binary polynomial in+ C22. 

Therefore, at least di2 of the n2 coefficients of a(')(X) are 

nonzero, or equivalently, at least dj2 of the n2 polynomials, 

7- 

Ao(X) t A1(X) An2-1(X) 

are nonzero. 

have 

For m E {1,2, ... ,nl-l} and I E {0,1,2, ..., n2-1}, we 

R m  c(p 7 = = 0. 

It follows from ( 2 ) ,  (6) and Lemma 1 that 

Ap(rm) = 0 

for p E {0,1,2, ..., n2- l}  and m E (1,2, ..., nl-l}. Thus, any 
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nonzero A,,(X) has n1 nonzero components according to BCH bound. 

Since c(X) contains at least dJ2 nonzero A,,(X) I s ,  

c(X) is at least nldJ2. 

the weight of 

Summarizing the above results, we have the following weight 

structure for the direct sum code C: 

(1) For c(X) E C-C2, W(C) 2 n2dll + dzz(dil-dl1); 

(2) For c(X) E C2 and c(X)+O, w(c) 2 nlda2. 

Suppose Cll and C22 are chosen such that 

n2dll+d22 (dil-dll) > nidi20 

Then C is an (n1n2, kl+k2) cyclic two-level UEP code with 

separation vector s = ( sl, s2) where 

2 n2dll+d22 (dil-dll) 

5 2  2 nld32' 

The code is capable of protecting the first kl message bits 

against any 

or fewer errors and protecting the next k2 message bits against 

any 

t2 = L "ld32/2 1 - 1 
or fewer errors. 

Example 3: Let n1=7 and n2=5. Let Cll be the (7,4) Hamming 

code with parity polynomial hll(X)=(X+l) (X3+X+l). Then the 

minimum distance dll of Cll is 3 and the minimum distance dil of 

the even weight subcode of Cll is 4. Let C22 be the (5,5) binary 

cyclic code with parity polynomial h22 (X) =X5+l. Then the minimum 
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distance d22 of C22 is 1 and the minimum distance dJ2 of the 

even-weight subcode of C22 is 2. The codes C1 and C2 are a 

(35,3) and a (35,4) cyclic codes with parity polynomials 

The direct sum hl(X)=X3+X+1 and h2(X)=X 4 3 2  +X +X +X+1 respectively. 

C of c1 and C2 is a (35,7) cyclic code with parity polynomial, 
h(X)=(X3+X+1) (X4+X3+X2+X+1). 

The separation vector 5 for C has two components, 

si 2 n2d11 + d22 (dil-dll) 

- > 5~3+1x(4-3) = 16, 

s2 2 nldj2 2 7x2 = 14. 

Using this code, the first 3 message bits will be decoded 

correctly if there are no more than 7 errors in a received word, 

and the next 4 message bits will be correctly decoded if there 

are 6 or fewer errors in a received word. The best single-level 

error-correcting cyclic code of length 35 which is capable of 

correcting 7 or fewer errors is a (35,4) code. The best single- 

level error correcting cyclic code of length 35 which is capable 

of correcting 6 or fewer errors is a (35,7) code. 

A short list of two-level UEP codes constructed based on the 

above method is given in Table 3, where the nonzeros 

Table 3 

Some Two-Level UEP Cyclic Codes 

nonzeros k "1 "2 kl k2 S1 s2 n 

35 7 7 5 3 4 16 14 5, 7 

51 10 3 17 2 8 22 18 3, 17 

105 9 7 15 3 6 48 42 15, 21, 35 
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105 9 7 15 3 6 50 42 7, 15, 35 

345 17 15 23 6 11 122 120 15, 23, 69 

of a code are given by their exponents of a, the n-th primitive 

root of unity. 

The codes constructed based on the above methods are 

actually direct sums of cyclic repetition codes. Van Gils has 

constructed some two-level majority-logic decodable UEP cyclic 

codes which are direct sums of majority-logic decodable 

repetition codes [lo]. Van Gils' codes form a subclass of the 

codes presented in this section. 

In the above construction, if we choose C2 as the (nln2,k2+l) 

code with parity polynomial 

h2(X) = h22(X) I 

then 

parity polynomial 

the direct-sum C of C1 and C2 is an (nln2,kl+k2+l) code with 

h(X) = hll(X)h22(X)/(X+1) 

In this case, 

tion vector s = (n2dll,nld22). The proof of this result is 

similar to the above one. 

ExamDle 4: In Example 3, if we choose C2 as the (35,5) code with 

if n2dll > nld22, C is a cyclic code with separa- 
- 

parity polynomial h2(X)=h22(X)=X 5 +1, then the direct sum C of C1 

and C2 is a (35,8) cyclic code with parity polynomial 

h(X)=(X3+X+1) (X5+l). 

The separation vector of C is = (15,7). The best single-level 

triple-error-correcting code of length 35 is a (35,8) code with 

minimum distance 7. 
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Consider the codes of length less than 63 which we have 

constructed in Example 3, 4 and Table 3. By taking s2 as a lower 

bound on the minimum distance of the corresponding cyclic code, 

we see from [16] that this lower bound gives the true minimum 

distances of these codes. 

VI. DECODING 

In the following, we present a procedure for decoding a 

subclass of cyclic direct-sum codes of composite length with two- 

level error correcting capabilities. The decoding is based on 

the algebraic structure of codes developed in section I1 to IV. 

Consider two cylic codes, C1 and C2, of composite length n=nln2, 

where n1 and n2 are relatively prime. Assume that the sets, 5, 

and J2, defined by ( 2 4 )  are disjoint. Then, the parity 

polynomials, 

The direct sum C of C1 and C2 has a separation vector s = 

(sl,s2) with sl'>Dld and s2zDZd2, if Dld,D2d2. Let A1 and A2 be 

the component message spaces of C1 and C2 repectively. The 

decoding to be presented can correctly decode any message x1 

from A1 if the number of transmission errors is at most L(Dld- 

1)/2] with d12. Furthermore, the decoding can correctly decode 

any message 51, from A2 if the number of transmission errors 

at most L(D2d2-1)/2] with d252. 

- 

hl(X) and h2(X), of C1 and C2 are relatively prime. 
- 

- 

is 

A code polynomial c(X) in C is the sum of a code polynomial 

cl(X) in C1 and a code polynomial c2(X) in C2, i.e. 

c(X) = Cl(X) + c,(X). 
For j=1,2, we express c.(X) in the following form: I 
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nl-1 

i = O  

( j )  X i . n 2  
where A i j )  ( X )  = 1 a i .n2+p 

Note t h a t  (56)  and (57)  are simply the expres s ions  of 

( 3 ) .  Express c ( X )  i n  t h e  fol lowing form: 

n2-1 

p=O 
= 1 A p ( X ) X p  

Then, it fol lows from (56) t h a t  

Ap(X)  = A i l ) ( X )  + A L 2 ) ( X )  

f o r  p = O ,  1,. . . ,n2-1. 

Suppose t h a t  mE 3,. Since 3, and 3, are d i s j o i n t ,  

It  follows f r o m  Lemma 1 and must 

t h a t  

be an i n t e g e r  i n  J2. 

A i 2 )  (-ym) = 0 

and Ap(ym) = Ai1) (ym) + A i 2 )  (7”) 

= A i 1 )  (ym) 

fo r  m E 3, and p = O,l, ..., n2-1. Reca l l  t h a t  

nl-1 

p=O 
a i m ) ( x )  = 1 Ai1 ( y”) ympXp 
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(56) 

(57) 

(2) and 

(58) 

(59)  

t hen  m 

(23) 



is a code polynomial in the code Vim) defined by (25). 

a code polynomial c(X) is transmitted. Let r(X) and e(X) be the 

received and error polynomial respectively. Then, 

Suppose 

r(x) = c(X) + e(X) (63) 

We express r(X) and e(X) in the following forms: 

n1n2-1 

i=O 
riX i r(X) = c 

nl-1 

i=O 
,i.n2 

where R p W  = c ‘i-n,+p 

and 
nl-1 

Ep(W = c ei-n2+p i=O 
,i.n2 

It follows from (63) that 

RP(X) = AJX) + EJX) 

Rp(rrn) = Ap(rrn) + Ep(rm) 

( 6 8 )  

for p = O,l, ..., n2-1. Clearly, for m E 3, and 09<n2, we have 

= Ah1) (rm) + Ep(rm) (69 )  

Suppose that m E 3,. We can easily show that 

Ai1) (rm) = 0 ,  
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and Ap(rrn) = Ai21 (rm) 

for m E 5, and p = O,l, ..., n2-1. Let 

r'(X) = r(X) - cl(X) 
n1n2-1 

i=O 
= c  ri 1 Xi 

I ,i.n2 
where RL(X) - -yl 'i.n,+p i=O 

From (57), (64) and (71), we readily see that 

RL(X) = Rp(X) - Ai1) (X) . 
It follows from (68), (70) and (73) that 

R;(rrn) = Rp(rrn) = Ai2) (rm) + E p h r n )  

for m E 5, and p = 0,1,. . . ,n2-1. The set, 

{Rp(rm) : Oim<nl and 09<n2) 

is the syndrome of r(X), and will be used for decoding r(X). 

For m E s,, multiplying both sides of (69) by rmpxp and 

(73) 

(74) 

summing over p ,  we have 

dm) (X) = a i m )  (X) + e(m) (X) 

where airn) (X) is given by (62) and 

( 7 5 )  

1 For m E J,, multiplying both sides of (74) by rmpXp and summing 



n2-1 
where r1 ( m )  (X) = 1 -ymPXp, 

p=O 

(78) 

(79)  

Note that, if e(X)=O, r(m)(X) = aim)(X) and is a code 

polynomial in V i m ) .  Also note that, for m E z,, if e(x)=O, 

r’ (m) (X) = airn) (X) and is a code polynomial in Virn)  . 

for m E z,, 

The decoding consists of t w o  stages. First r(X) is decoded 

into cl(X) and then rl(X) = r(X)-cl(X) is decoded into c,(X). At 

the first stage, we decode r(m) (X) into airn) (X) which depends on 

D1 and d, where D1 is given by (28) and d is the minimum distance 

of W given by (32). 

determine A$’) (X) from (A$’) (7”) : m E 3,)  for p = 0,1,. . . ,n2-1 
(see Appendix B). Then, cl(X) is correctly recovered. At the 

following stage, we similarly decode r1 (m) (X) into aim) (X) ‘-which 

depends on D2 and d2, where D2 is given by (28) and d2 is the 

minimum distance of W2 given by (31). Then, AS2) (X) , 
p=O, 1,. . . ,n2-1, and c2 (X) can be recovered. 

After ap)(X) is decoded, we can uniquely 

There are two cases to be considered in decoding r(X) into 

Cl(X) 

Case I 

Suppose that d = 1. For this case, s1 = D1. The decoding of 

r(X) into cl(X) consists of the following steps: 

(1) For any m E r,, we decode the received word, 
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(2) 

( 3 )  

Now 

in Vi") based on a certain decoding algorithm for 

Vp). 

codeword, 

The codeword *X(m) is the estimate of the real 

(Ah1) (rm) ,Ai1) (7 m m  7 I ,A6,"1 (rm) 7m(n2-1) ) 

For any m E J1 and 09<n2, we set *AL1) (-ym)=O. 

For 09cn2 and Olmcnl, find a codeword 

in W such that 

Then the estimate fo r  cl(X) is 

we need to show that if the number of errors in e(X) is 

L(D1-1)/2] or less, the above decoding results in the correct code 

polynomial cl(X) . Suppose e(X) contains L(D1-1)/2] or fewer 

errors. 

1)/2] E,(X) I s  which are nonzero. 

error polynomial e(m) ( X )  contains at most 1 ( Dl-1) /2J errors. 

Recall that the minimum distance of Vi") is dim). From (25) 

From (65) and (67), we see that there are at most L(D1- 

Then from (77), we see that the 
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and 

or fewer errors. As a result, the first step of the above 

decoding procedure gives the correct airn) (X) for md,. Once 

all aim) (X) I s  for Oim<nl have been determined, step 3 gives a 

unique solution cl(X) [see appendix B]. 

(27), we see that V i m )  is capable of correcting L(D1-1)/2] 

Case I1 

Suppose that the minimum distance d of W is 2. Since W is a 

binary cyclic code, W has alll as its zero. Therefore W is an 

even-weight code. This implies that, for Og<n2, Ap(X) has even 

weight. The procedure for decoding r(X) into cl(X) consists of 

the following steps: 

(1) For Og<n2, compute the modulo-2 sum of the coefficients 

of Rp(X) . contains 

errors and Ep(X)+O. We say that Rp(X) is detected in 

error. In this case, we assume that 

If the sum is not zero, then Rp(X) 

Rp(7m) + Ai1) (79 

for ma1. In decoding the word 

E(m) = (Ro(7m),Rl(7 m m  17 r*-*rRn2-l(7 m 17 m(n2-1)), 
( 8 3 )  

if Rp(X) is detected in error, the component Rp(7m)7m 

is removed to create an erasure. Hence E(m) may 

contain symbol errors and erasures. 

(2) For m E zl, we decode into a codeword, 

(*Ah1) (rm) , *Ai1) (rm) rm, * I 1 

in 

capable of handling both symbol errors and erasures. 

Virn)  based on a certain decoding algorithm which is 
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(3) 

(4) For 09<n2 and Oim<nl, find a codeword, 

For m E J1 and 09<n2, we set *Ai1) (rm)=O, 

in W1 such that 

Then the estimate for cl(x) is 

For d=2, the direct sum code C has a separation vector 

with s1=2D1. Now we want to show that, if there are no more 

than L(2D1-1)/2]=D1-1 errors in the error polynomial e(X), the 

above decoding procedure gives the correct estimate of cl(X). 

Suppose there are no more than D1-1 errors in e(X). Let f be the 

number of erasures in In the worst case, each of these 

erasure contains a single error from e(X). Then there are at 

most 

D1-1-f . = I  2 1 
undetected error symbols in z(m), each contains even number of 

errors from e(X). Since 

the erasures and the symbol errors will be corrected at step 2. 

As a result, step 4 yields the correct code polynomial cl(X). 
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Once cl(X) has been determined, we start to decode 

rl(X)=r(X)-cl(X) into c2(X). As we mentioned earlier, the 

decoding 

w2. Therefore, two cases, (I) d2=l, (11)' d2=2, need to be 

considered. To decode rl(X) into c2(X), we simply follow the 

of rl(X) into c2(X) depends on the minimum distance d2 of 

procedure for decoding r(X) into cl(X) if we replace r(X) by 

rl(X), 

by RL(X) , 
D1 by D2, d by d2, and s1 by s2. 

cl(X) by c2(X), J and J1 by J2, 5 and 7, by J,, Rp(X) 

Ai1) (X) by AL2) (X) , Vim) by Vam) , W and W1 by W 2 ,  

VII. BURST-ERROR-CORRECTION CAPABILITIES OF 

CYCLIC DIRECT-SUM CODES 

So far, we have studied the random error correcting 

capabilities of cyclic codes through their separation vectors. 

In this section, we shall see that, under some conditions, the 

cyclic codes given in section IV have multi-level burst error 

correcting capabilities in addition to the random -,.error 

correcting capabilities specified by their separation vectors. 

Let C be the direct sum of two cyclic codes, C1 and C2, of 

composite length n=n1n2 where n1 and n2 are relatively prime. 

Assume that, the sets, J1 and 3,, defined by ( 2 4 )  are disjoint. 

The code C has a separation vector % at least (Did, D2d2) if 

Dld > D2d2. A code polynomial c(X) in C is the sum of a code 

polynomial cl(X) in C1 and a code polynomial c2(X) in C2, i.e. 

- 

c(X) = Cl(X) + c,(X). 
Recall that, 

correct recovery of A$j)(X) for p = O,l, ..., n2-1, where j = 1,2 

in section VI, the decoding of cj(X) relies on the 
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and 

of c(X) in an nlxn2 code array as shown in Figure 1. Note that 

the.p-th column of the code array for c(X) is simply the nl-tuple 

representation of Ap(X), which is given by (59). Clearly, the 

coeffcients of c.(X) can also be arranged as an nlxn2 code array 3 
for which the p-th column is the nl-tuple representation of 

ALj) (X) , where j=1,2,. Suppose c(X) is transmitted column by 

column. Then, the coefficients for the recieved and error 

polynomials, r(X) and e(X) can also be arranged as nlxn2 arrays. 

The p-th column of the nlxn2 array for e(X) is the nl-tuple 

representation of Ep(X) and the p-th column of the nlxn2 array 

for r(X) is the nl-tuple representation of Rp(X). It is easy to 

see that all the arguments in section VI are still valid. 

ALj) (X) is given by (57). Now we arrange the coefficients 

Consider case I of decoding r(X) into cl(X), which is given 

in section VI. Recall that d = 1 in this case. Suppose that the 

nlxn2 array associated to e(X) has no greater than L(D1-1)/2] 

nonzero column. Clearly, there are at most L(D1-1)/2] nonzero 

Ep(X) ' s  in e ( X )  . As a result, airn) (X) for m a l  can be 

correctly decoded at step 1. Then, cl(X) can be correctly 

decoded at step 3. The correctable error patterns for decoding 

r(X) into cl(X) with d = 1 includes the following categories: 

(1) Any error pattern containing at most L(D1-1)/2] random 

errors. 

Any error burst of length up to (L(Dl-l)/2]-l} nl+l. (2) 

(3) Any multiple error bursts which affects no more than 

L(D1-l)/2] columns in the nlxn2 array associated to 
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C(X) ' 

Once cl(X) is recovered, the component message corresponding to 

cl(X) can be determined. Thus, we have the following result: 

If d=l, the component message from the component message 

space of C1 is protected against up to L(Dl-l)/2] random errors 

and any error burst of length up to {L(D1-1)/2j-1}-n1+1. 

Similarly, we can have the following result from decoding r'(X) 

into c2 (X) : 

If dZ=l, the component message from the component message 

space of C2 is protected against up to L(D2-1)/2] random errors 

and any error burst of length up to (L(D2-1)/2]-1).nl+l. 

Consider case I1 of decoding r(X) into cl(X) which i s  given 

in section VI. Note that d=2 in this case. Suppose the error 

pattern contains D1-1 random errors. It has been shown in 

section VI that cl(X) can be recovered at step 4. Suppose the 

error pattern is an error burst of length at most { [(D1-1)/2]- 

1) .n1+2. In the worst case, there are [(D1-1)/2]+1 nonzero 

columns in the n1xn2 array associated to e(X) with at least two 

columns containing only one nonzero component. Suppose that 

there are f columns containing only one nonzero components in the 

nlxn2 array associated to e(X) where f 2. 2. Thus, the f 

corresponding Rp(X)'s are detected to be in error at step 1. 

Then, g(m) which is given by (83) contains f erasures and at 

most L(D1-1)/2]+1-f undetected symbol errors. Since { L(D1- 

1)/2J+l-f)-2+f < D1 for f 2 2, the erasures and the symbol errors 

will be corrected at step 2. Thus, cl(X) can be correctly 

docoded at step 4. Then, we have the following result: 

* 
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If d=2, the component message from the component message 

of C1 is protected against up to D1-1 random errors and any space 

error burst of length up to { l(D1-1)/2]-1).n1+2. 

Similarly, we can obtain the following result from decoding 

r’ (X) into c2(X) : 

If d2=2, the component message from the component message 

of C2 is protected against up to D2-1 random errors and any space 

error burst of length up to (L(D2-1)/2]-1).n1+2. 

Now we consider the (51,34) code given in Example 2. We 

see that the first 18 message bits are protected against up to 3 

random errors and any error burst of length up to 7; while the 

next 16 message bits are protected against up to 2 random errors. 

For the (51,19) code given in Table 2, we see that the first bit 

is protected against up to 8 random errors and any error burst of 

length up to 22; while the next 18 bits are protected against up 

to 6 random errors and any error burst of length up to 8. 

There exist unequal error protection codes for which all the 

component messages are equally protected against random errors 

but not equally protected against burst errors. An example is 

given as follows. 

Example 5: 

GF(26). Let 8=a7 and 7=a9. Table 4 is a 7x9 array with 63 

nonnegative integers from 0 to 62. A number p in the array 

represents the field element ap. If p is at the m-th row and the 

1-th column of the array, then the element a” is the product of 

rm and p’, i.e. 

Let n1=7 and n2=9. Let a be a primitive element of 

40 



Table 4 

Nonzeros of a (63,24) Binary Cyclic Code 

0 7 14 21 28 35 42 49 56 

9 16 23 30 - 37 - 44 51 58 2 

18 - 2 5  32 39 46 53 60 4 - 11 

27 34 41* 48* 55* 62* 6* 13* 20 

36 43 - 5 0  57 1 8 15 - 22 29 

45 52* 59* 3* 10 17 24* 31* 38* 

54 61* 5 12" 19* 26* 33* 40 47* * 

Let C1 by an (63,6) binary cyclic code whose nonzeros are 

specified by the underlined numbers in Table 4. Let C2 be an 

(63,18) binary cyclic code whose nonzeros are specified by 

numbers with * in Table 4. For example, is a nonzero of C1 

and CX' is a nonzero of C2. Clearly, C1 and C2 have no noperos 

in common. Let C be the direct sum of C1 and C2 which is a 

(63,24) code. From Table 4, (22) and (23), we see that 

J1={0,3,5,6) and J2 ={0,1,2,4). Then 5, and 5, are disjoint. 

From Table 4, we see that Vi1) has p 0 1 2 3  ,p ,p ,g ,p-3,g-2,p-1 as 

zeros. 

It is easy to check that Vi1), Vi2),Vi4) are equivalent. 

. Hence, the minimum distances di1),di2), and d i 4 )  of 

From (27), we have D1 2 8. 

Thus, the minimum distance di') of vi1) is at least 8. 

Vi1) ,Vi2), and Vi4) are identical. 

Since J=JlnT2={0), W has only one zero which is yo=l. The 
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minimum distance d of W is at least 2. From Table 4, we see that 

Vi3) has p-l,fl0 and p1 as zeros. Thus, the minimum distance 

da3) of Vi3) is at least 4. We can easily check that Vi3), 

Vi5), and VJ6) are equivalent. Hence, the minimum distances 

di3), di5), and dJ6) of Vi3), VJ5), and Vi6) are identical. 

From (28), we have D224. Since J2=(0,1,2,4}, W2 has 7 0 , 7 9- -7 2 , 
718=y4, and 736=7 as zeros. By BCH bound, we see that the 

minimum distance d2 of W2 is at least 4. Note that Dld,16 and 

D2d21-16. Thus, C is a (63,24) code for the product message space 

A=AlxA2 with separation vector s= ( sl, s2) , where A1=( 0, l} 

A2={0,1}18, Since d=2, we see that the first 6 

message bits of a message are protected against up to 7 random 

errors and any error burst of length up to 16. However, the next 

18 message bits are only protected against 7 random errors or 

less. 

- 

s1'16 and s2'16. 

For comparison, we see that the (63,24) primitive BCH code 

can correct 7 random errors or less. 
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APPENDIX A 
a m  The Uniaue Expression of a p  as B -J 

In this appendix, we shall prove that apt  for OLp<n, can be 

uniquely expressed as the product of as given by ( 4 ) ,  

where n=n1n2, 09<n2, Osm<nl, and nl, n2 are relatively parime. 

Note that a is a primitive n-th root of unity, p=anl, and 7=an2. 

First, we show the existence. Since n1 and n2 are 

relatively prime, there exist integers a and b such that 

anl+bn2=p. 

Clearly, 

,P = ,an1+bn2 = (&)a. p 2 ) b  = a b 
I370 

Let l=a mod n2 and m=b mod nl. Then 

a P  = p'7m, 

where 051<n2 and O<mlnl. 

(A-1) 

Next, we show the uniqueness. Assume that 

(A-2 1 ,p = B17m = 1' m 1  B 7 f  

where 051,R1<n2 and Osm, ml<nl. The condition (A-2) implies 

1-1 7m-m I =1 , B 

or equivalently 

-1 = ,m-rnI (A-3) 
where -n2<11-1<n2 and -nl<m-ml<nl. 

The equation (A-3) implies a = l l  and m=ml, since 

{p' : 1 is an integer 1 n ( rm : m is an integer 1 = (1). 

Thus, the expression (A-1) is unique under the condition that 

OsR<nZ and OLm<nl. 
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APPENDIX B 

The Recovery of Ail)rX) 

In this appendix, we shall show that Ah1) (X) can be 

recovered from the set (Ail)(ym) : m E Tl} as stated in section 

VI, where p = 0,1,. . . ,n2-1. 
It follows from (57) that the coefficients of Ail)(X) form 

the nl-tuple 

which is a codeword of the binary cyclic code W1 defined by (30). 

Note that 

- 
Also note that ymn2, m E 3, are nonzeros of W1, where J1 is 

defined by ( 2 4 ) .  From the following lemma, we can easily see 

that Ail)(X) is uniquely determined by the set (AS1)(ym) : 

ma,}. 

Lemma B-1: Consider an (n,k) binary cyclic code V which has aml, 

am2, . . . ,arnk as all its nonzeros, where CY is a primitive n-th 

root of unity. Let vl(X) and v2(X) be code polynomials of V. 
If vl(a mi )‘V2(Qmi) for i=1,2,. . . ,k, then vl(X)=v2(X). 
Proof: Let v(X)=v,(X)+v,(X), which is also a code polynomial of 

V. For i=1,2,. . . ,k, vl(ami)=v2(ami) implies v(ami)=0. Combining 

the fact that v(ai)=O for i E (0,1,..., n-1) - (ml, 
we see that v(al)=O for i=O,l, ..., n-1. 

m2, ..., mk}, 
Note that v(X) has degree 

’ at most n-1 which implies that a nonzero v(X) has at most n-1 

distinct roots. Thus, v(X)=O. This implies that vl(X)=v2(X). 
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